Velocidade de Descarga de Ventiladores – Mitos e Verdades

A velocidade do ar, na boca de descarga de ventiladores industriais, é um parâmetro muito usado nas especificações técnicas destes equipamentos, por parte de projetistas e usuários de sistemas de ventilação. O fundamento em limitar a velocidade de descarga do ar na saída do ventilador, seria por estar assim também limitando o ruído emitido pelo mesmo. Na realidade a velocidade de descarga (vd), pouco ou nada, tem a ver com o nível de ruído emitido pelo ventilador. O ruído emitido por um ventilador está relacionado com o tipo de ventilador, sua vazão e pressão de operação, sua velocidade de rotação e seu rendimento. Portanto a velocidade de descarga não compõe nenhuma das fórmulas do roteiro de cálculo de ruído de um ventilador.

            Sendo a vd um fator fundamental, que tem como consequência a determinação do tamanho do ventilador adequado para atender o critério estabelecido pelo projetista, alguns fabricantes de ventiladores comercializam equipamentos com bocas de descarga aumentadas, em dimensões superiores às estabelecidas nas normas AMCA 99-2001-82 e AMCA 99-2401-82. Seu objetivo é selecionar e ofertar ventiladores de menor tamanho, que atendam ao critério de uma velocidade de descarga mais baixa, em comparação com um ventilador maior que atende o dimensional especificado em norma técnica internacional. Assim conseguem obter sucesso comercial oferecendo equipamentos de menor custo, mas em desacordo com a melhor técnica, proporcionando vantagem enganosa ao cliente.

            Para melhor regulamentar o tema, a AMCA (Air Movement and Control Association Inc.)  apresenta o conceito de “Área de Jato – Aj” ou “Blast Area”, que é a verdadeira área de saída do ventilador, ao contrário de “Área de Descarga – Ad” ou “Outlet Area”. A Área de Jato é aquela considerada na seção da lingueta do ventilador, e não na seção do flange. Considerando assim, os ventiladores de boca de descarga aumentada são ainda mais perniciosos, pois sua área de jato é menor que a área de um ventilador de maior tamanho, e não vice-versa.

Nível de Turbulência

Fora isto, a utilização de uma área de descarga superior ao limite das normas AMCA indroduz uma maior turbulência no fluxo de ar, como pode ser visto nas figuras acima, gerando ruído e perdas de carga maiores que aquelas obtidas por um ventilador bem projetado.

A S&P Brasil Ventilação garante que toda sua linha de equipamentos obedece as especificações das normas AMCA.

Acesse solerpalau.com.br e conheça toda a nossa linha de ventiladores.

Respiradouros para cozinhas. Requisitos e recomendações.

A cozinha é um dos locais onde mais gases, fumos e odores se acumulam. Neste espaço, é especialmente necessária a existência de grelhas de ventilação para cozinhas que complementem a ventilação natural e aquela produzida pelas condutas de extração.

Respiradouros de Cozinha

Neste texto, vamos destacar as grelhas de ventilação para cozinhas domésticas.

Regulamentos a serem aplicados na ventilação de cozinhas domésticas.

Para ter uma base sólida, devemos olhar a seção HS3 do documento básico do HS no que diz respeito à saúde, levando em consideração vários aspectos:

    Este documento estabelece que deve estar disponível nas zonas de cocção das cozinhas um sistema que permita a extração para o exterior dos poluentes derivados da sua utilização. Este sistema é independente da ventilação da casa. Esta norma será cumprida quando o sistema permitir a extração de uma vazão mínima de 50 l / s da zona de cozimento da cozinha.

    As cozinhas deverão ter aberturas de extração. A referida abertura de extração deve estar localizada na área mais contaminada da cozinha, que é, como vimos no ponto anterior, a área de cozimento. Estas aberturas de extração serão conectadas a dutos de extração (um único pode ser compartilhado por cozinhas, banheiros, sanitários e depósitos) e sua localização a uma distância do teto inferior a 200 mm e a uma distância de qualquer canto é obrigatória. Ou canto vertical maior que 100 mm.

É obrigatório implementar um sistema de ventilação por extração mecânica. Este ponto leva à necessidade de ter um exaustor conectado a um duto de extração independente do resto dos dutos de ventilação gerais da casa. SE a referida conduta for partilhada por vários extractores, todos deverão incluir uma válvula automática (ou qualquer outro sistema anti-reversão) que lhes permita manter a ligação à conduta aberta apenas quando este estiver a funcionar.

As aberturas de ventilação que ficam em contato com o exterior devem ser dispostas de forma que não permitam a entrada de água da chuva.

Além disso, as cozinhas devem ter um sistema complementar de ventilação natural, como janela ou porta para o exterior.

Essas diretrizes são algumas das regras a serem aplicadas na ventilação de cozinhas domésticas. Esta área trata da ventilação em geral. No entanto, não vamos olhar para os extratores, mas para as aberturas.

Recomendações sobre respiros de cozinha

As normas a serem aplicadas são obrigatórias, mas existem outras diretrizes de ação e recomendações cujo objetivo é maximizar os benefícios proporcionados por esses elementos de ventilação.

Dentre eles, podemos destacar:

Evite a obstrução das grelhas por armários ou outros elementos de mobiliário.

Utilize um sistema de ventilação de duplo fluxo que permite a extração do ar viciado e, por sua vez, a entrada do ar filtrado para renovar a atmosfera interior da sala.

Combine a ação dos respiradouros com a ventilação natural abrindo janelas e / ou portas.

Utilização dos sistemas de extração (exaustores, exaustores) presentes na zona de cozimento para limitar o acúmulo de fumos, gases …

Evite umidade e odores que podem levar a uma má qualidade do ar que afeta a saúde e o bem-estar das pessoas presentes na cozinha.

Possíveis grades usadas em cozinhas domésticas

Por último, mas não menos importante, estão os diferentes tipos de grades que geralmente são instalados nas cozinhas domésticas.

Um dos fatores que influenciam no número, tipo e localização das grelhas é o uso ou a ausência de gás.

No primeiro caso, a cozinha deve ser equipada com grelha a poucos centímetros do solo se for utilizado gás natural e, no caso do gás propano ou butano, deverá ser instalada uma segunda grelha junto ao teto.

Essas grades devem ser fixadas de forma que a ventilação seja contínua. Ao contrário de cozinhas sem utilização de gás, onde as grelhas podem ser reguláveis.

Dada esta peculiaridade, vamos discutir a seguir os tipos de grades que podem estar presentes nas cozinhas domésticas.

Grelhas de descarga: possuem lâminas reguláveis ​​individualmente para permitir a regulação da amplitude e da altura do fluxo de ar que é impulsionado. Este tipo é o mais comum em cozinhas domésticas.

Outros modelos que podem ser colocados na cozinha são:

    Grades de piso: normalmente são colocadas na parte inferior de portas ou divisórias e podem ser utilizadas tanto para a extração como para a respiração do ar.

    Grades de trânsito: também localizadas em portas ou divisórias, têm como função a livre circulação do ar e, via de regra, impedem a entrada de luz.

    Grelhas de ventilação: permitem a ventilação dos aparelhos encastrados presentes na cozinha. Geladeiras, máquinas de lavar, fornos ou microondas são alguns exemplos de aparelhos cujo desempenho e manutenção é implementado com a instalação dessas grades.

    Grades de entrada de ar externas: como o próprio nome sugere, são grades que permitem a entrada de ar externo ao mesmo tempo em que evitam a entrada de água da chuva e outros elementos derivados dos fenômenos atmosféricos.

Conheça nossas soluções para exaustão, acesse solerpalau.com.br.

Read More

Usos e vantagens da filtração em cozinhas e restaurantes com filtros eletrostáticos

A extração de fumos e odores em cozinhas tem sido amplamente tratada por sistemas de ventilação convencionais, porém, em alguns casos, existem situações e instalações que estão fora do normal e requerem diferentes estudos e análises. Por isso, novas tecnologias estão se abrindo para dar uma solução adequada, neste caso falaremos dos filtros eletrostáticos que chegaram ao mercado de cozinhas como uma boa alternativa para controle de fumaça e odores, vamos ver do que se trata.

Filtração em Cozinha
Filtração em Cozinha

O que é um filtro eletrostático?

Na ventilação costuma-se instalar filtros para retirar qualquer poluente presente no ar, isso não é exceção dos filtros eletrostáticos, e como o próprio nome indica, é um elemento responsável pela limpeza do ar por meio da Interação de o filtro com as partículas, ao passar por ele, é induzida uma carga elétrica para que sejam facilmente atraídas pelo coletor, é como se tivessem um ímã que as atrai, assim é mais fácil capturá-las.

Posso usar na minha cozinha?

Os filtros eletrostáticos podem ser utilizados em qualquer cozinha comercial ou industrial, são elementos que devem ser considerados desde o momento do planejamento da construção, ou seja, desde o projeto, visto que é necessário contemplar os espaços disponíveis para sua manutenção, as perdas de pressão geradas na o sistema de ventilação, seu custo, requisitos elétricos e de instalação.

Não são elementos para cozinhas residenciais, pois se tratam de equipamentos robustos que, em sua maioria, suportam vazões superiores às utilizadas nessas aplicações e requerem espaços e condições de instalação provavelmente não encontrados em apartamentos e residências comuns.

Cabe esclarecer que os filtros eletrostáticos não são usados ​​apenas em cozinhas, eles têm muitas mais aplicações industriais, para controle de resíduos gasosos, fumaça, entre outros.

Que vantagens tenho ao instalar um filtro eletrostático?

Temos visto restaurantes e empresas de alimentos com ações judiciais e processos criminais para a descarga de seus sistemas de extração em locais onde os fumos e odores já atingiram seus vizinhos, portanto, destaco esta primeira vantagem por ser uma das mais interessantes que possui este tipo do sistema e reduzir os fumos e odores a taxas muito baixas, uma vez que podem ser alcançadas taxas de purificação de 95% nos fumos e 80% nos odores. Esses valores podem variar, pois dependem da marca a ser instalada.

Da mesma forma, outra vantagem que possui é que geram pouquíssima pressão no sistema, pois ficam em torno de 40 e 50 Pa, embora seja uma pressão baixa deve sempre ser considerada, no caso de um sistema já instalado deve-se verificar se o ventilador Existente pode ser configurado para as novas condições de pressão.

Da mesma forma, devido à sua filtração eficiente, reduz o acúmulo de graxa nos dutos, este é um bom sistema para locais onde o acesso para limpeza dos dutos é muito difícil, um filtro eletrostático instalado de forma inteligente poderia reduzir consideravelmente este problema.

E um último é para locais onde não há saída para o exterior e apenas o ar pode ser descarregado internamente, pode-se fazer uma passagem dupla, ou seja, uma dupla filtração, isso geraria um índice de eficiência de 99%, e o ar pode ser descarregado para o ambiente interno.

Por fim, os filtros eletrostáticos são uma alternativa muito boa a se considerar quando é necessária uma descarga de ar com baixo teor de poluentes, porém, uma avaliação prévia por um especialista deve sempre ser feita antes de se decidir, neste as diferentes possibilidades devem ser avaliadas, pois podem ser um pouco mais caros do que um sistema convencional. Por se tratar de um equipamento adicional que auxilia no sistema de ventilação padrão.

Conheça nossas soluções em Ventilação, acesse solerpalau.com.br.

Dicas e recomendações para ventilação adequada em edifícios industriais.

Edifícios industriais são construções nas quais, devido às suas características, costumam ocorrer problemas de ventilação. As atividades neles realizadas costumam ser intensas o suficiente para que apareçam problemas relacionados à qualidade do ar, por isso é fundamental que sejam bem ventilados.

Dicas e recomendações para ventilação adequada em edifícios industriais.

Portanto, é importante que esse tipo de ambiente tenha ventilação adequada, que limpe o ar viciado de dentro e o renove com o ar de fora. Claro que vai depender das características do navio, da sua dimensão, dos trabalhadores e do tipo de atividade desenvolvida.

O que é ventilação em edifícios industriais?

Basicamente, a ventilação em edifícios industriais é a renovação do ar interno por meio de um sistema de extração do ar viciado para o exterior. Graças a essa ventilação, é possível garantir a qualidade do ar, reduzir a concentração de gases ou partículas para níveis adequados e evitar a entrada de patógenos.

Para ventilar ou renovar um local, sala ou armazém industrial, devemos fornecer ar de um lado e extraí-lo do outro. Esta renovação do ar vai depender das características das instalações, das alterações sofridas pelo ar no seu interior e do calor que é libertado em função da atividade, especialmente no sector industrial.

Como é medida a renovação do ar interior?

A renovação do ar em uma determinada sala ou edifício industrial é medida por meio do fluxo de ar, por meio de um anemômetro ou instrumento similar. Esse fluxo será proporcional ao volume do edifício industrial. É medido em m3 / h.

O fluxo de ar necessário (Q) é calculado da seguinte forma:

Q = Volume da planta x renovações por hora

Por exemplo, vamos imaginar um armazém com um volume de 1.000 metros cúbicos. Levando em consideração que, em geral, em edifícios industriais são necessárias cerca de 7 renovações de ar por hora, o fluxo de ar será o seguinte:

Q = 1 000 m3 x 7 renovações x hora = 7 000 m3 / h

Em outras palavras, uma vazão de 7.000 m3 / h será necessária para renovar corretamente o ar nesta sala.

Além disso, ao ventilar edifícios industriais, é importante levar em consideração a pressão necessária para vencer a resistência oferecida pela instalação, que é medida em mmwca.

Tipos de ventilação em edifícios industriais

Não existe um tipo de ventilação ideal para todos os edifícios industriais, pois depende de diversos fatores, entre os quais se destacam as dimensões do armazém, os materiais utilizados na construção, as substâncias presentes, o número de trabalhadores ou o tipo de atividade isso se desdobra.

Portanto, existem diferentes tipos de ventilação em edifícios industriais, dependendo de suas características:

Ventilação forçada ou dinâmica: é um tipo de sistema de ventilação que utiliza ventiladores elétricos que empurram o ar para o exterior de forma a garantir a temperatura desejada na casa e a qualidade do ar. Normalmente, em edificações abertas, esses extratores costumam ser do tipo helicoidal, pois, embora façam muito barulho, apresentam menos perdas de carga, o que é o que realmente importa quando se trata de uma ventilação adequada. São ideais para edifícios industriais em que são realizadas atividades produtivas que podem contaminar o ar ou emitir partículas.

    Ventilação estática ou natural: em armazéns ou instalações logísticas, onde não se emitem tantas partículas ou fumos, pode ser suficiente utilizar extratores estáticos ou naturais que, por meio da pressão atmosférica, extraem o ar de forma natural.

    A ventilação eólica, utiliza extratores que se movem graças à força do vento, ajudando o ar quente a escapar do navio. Normalmente são ideais para navios localizados em locais com muito vento, onde são muito procurados pelo fato de não necessitarem de energia elétrica para funcionar.

Ventilação estática e natural não são recomendadas, pois dependem das condições atmosféricas e podem não ser favoráveis ​​quando a ventilação máxima é necessária.

Com que frequência um armazém industrial deve ser ventilado?

Deve ser ventilado para manter no Limite os níveis de contaminante dentro da Norma NR15

1.3.15.6

CONTAMINANTE LIMITE DE TOLERÂNCIA

– Monóxido de carbono 20 ppm

 – Dióxido de carbono 2.500 ppm

– Óleo ou material particulado 5 mg/m³ (PT>2kgf/cm 2)3 g/m³ (PT

Segundo a LEI Nº 6.514, DE 22 DE DEZEMBRO DE 1977.

Art . 176 – Os locais de trabalho deverão ter ventilação natural, compatível com o serviço realizado. Parágrafo único – A ventilação artificial será obrigatória sempre que a natural não preencha as condições de conforto térmico.

Conheça nossas soluções para ventilação industrial acessando https://solerpalau.com.br/

Qual é a diferença entre poluição ambiental e poluição?

Em termos coloquiais, usamos essas duas expressões como se fossem sinônimos. No entanto, os conceitos de poluição ambiental e poluição apresentam certas nuances que os diferenciam. É interessante chegar a esse nível de detalhamento porque é a forma mais eficiente de encontrar soluções específicas para os problemas que cada uma dessas realidades causa.

Como distinguir entre poluição e poluição ambiental?

Para compreender as nuances que marcam as diferenças entre poluição ambiental e poluição, é necessário recorrer às respectivas definições lexicais recolhidas no RAE. Assim, podemos resumir que:

  • A poluição ambiental é o resultado da introdução de agentes físicos ou químicos em um ambiente com a capacidade de alterar adversamente esse ambiente específico.
  • A poluição é uma forma de poluição causada por resíduos de processos biológicos ou industriais, que se caracteriza por se manifestar de forma particularmente intensa e nociva em meios fluidos (ar ou água).

A partir dessa referência terminológica, podem-se tirar conclusões que marcam as diferenças entre esses dois conceitos. Em linhas gerais, pode-se dizer que qualquer tipo de poluição é poluição, enquanto a poluição ambiental nem sempre pode ser considerada poluição.

Exemplos para entender a diferença entre poluição e poluição.

Não há maneira mais eficaz e poderosa de entender um conceito do que por meio de um exemplo tirado da realidade. Por este motivo, tendo em conta uma possível dificuldade em apreciar as nuances que distinguem a poluição da poluição ambiental, achamos interessante apresentar casos específicos representativos de ambas as situações.

Certamente, a primeira imagem que vem à mente quando se pensa em poluição é uma nuvem escura e densa de fumaça projetada de uma fábrica na atmosfera. Na verdade, esta é uma suposição mais do que representativa do que é poluição. O mesmo se poderia dizer das descargas de águas cinzas que desembocam em nossos rios, que carregam grande carga de poluição biológica por se tratar de águas não tratadas e filtradas, por isso apresentam altos níveis de concentração bacteriana.

Se agora nos concentrarmos em exemplos representativos de poluição ambiental, o mais simbólico é o dos lixões naturais. Para que esses locais fossem identificados como um problema de poluição, eles teriam que gerar poluição de tal intensidade que os aquíferos próximos fossem alterados e afetados.

As repercussões da poluição

Ficou claro que a poluição é um problema muito mais agudo que merece a adoção de medidas imediatas e contundentes para detê-la, pois o impacto sobre o meio ambiente e sobre a nossa saúde é altamente nocivo e perigoso. Mas, além desta primeira distinção, há outros elementos que confirmam porque os termos poluição ambiental e poluição não devem ser usados ​​como sinônimos se quisermos ser rigorosos no uso da linguagem e, acima de tudo, precisos quando nos deparamos com problemas específicos que cada um deles carrega.

Especificamente, outra dessas diferenças é aquela que se refere ao ambiente em que a poluição se manifesta, que se reduz exclusivamente aos fluidos. Em outras palavras, apenas o intenso fenômeno poluidor que afeta o ar ou a água pode ser considerado poluição. Este fator, longe de ser menor, é essencial porque permite compreender em que medida as repercussões diretas da poluição na nossa saúde são mais graves do que as da poluição ambiental.

Respirar ar altamente intoxicado é uma das causas que explicam o aumento exponencial da prevalência de doenças cardíacas e respiratórias em áreas com altos níveis de poluição em todo o mundo. Da mesma forma, o uso para consumo humano de água com níveis excessivos de contaminação se traduz no aparecimento de doenças tão graves como o tifo, a cólera, a disenteria ou mesmo a poliomielite. De fato, um dos alertas mais urgentes da OMS refere-se à necessidade de garantir o acesso à água potável para todos. De acordo com seus próprios dados, a poluição da água é responsável por mais de 500.000 mortes por diarreia por ano.

Como lidar com as consequências da poluição ambiental?

Embora tenhamos apontado que a poluição ambiental tem efeitos menos intensos sobre o meio ambiente que afeta, isso não significa que não seja urgente também tomar medidas para contê-la, como apontamos no caso da poluição. Novamente, é muito útil usarmos um exemplo para explicar esse ponto. Quando a contaminação é detectada em um solo que não é usado diretamente para a agricultura, pode parecer que nenhuma ação é necessária porque a saúde humana não é afetada. Essa conclusão é um erro grave, pois, a médio e longo prazo, essa contaminação se espalhará por toda a cadeia biológica e acabará atingindo as pessoas.

Portanto, está comprovado que existem diferenças entre poluição e poluição ambiental, singularidades que devem ser conhecidas para se abordar precisamente soluções sob medida para esses problemas e suas consequências. Mas, acima de tudo, é importante entender que a sustentabilidade e o cuidado com o meio ambiente são realidades globais nas quais devemos nos envolver de todas as áreas, se realmente queremos deter as mudanças climáticas.

O que é diagrama psicrométrico?

O diagrama psicrométrico é uma representação gráfica que relaciona os parâmetros físicos da mistura de ar e umidade. Com o objetivo de estudar as propriedades termodinâmicas do ar úmido, o diagrama nos ajudará a determinar o conforto humano em um espaço interno.

O diagrama psicrométrico é uma ferramenta psicrométrica usada para obter uma compreensão aprofundada das relações entre a umidade do ar interno e as condições de temperatura. Através da utilização do diagrama psicrométrico e com cálculos adequados, é possível saber a quantidade de calor ou frio necessária para atingir a temperatura e a umidade desejadas.

Recentemente, conversamos sobre a importância de ter boas condições de qualidade do ar interno para que o meio ambiente seja saudável. Ao contrário, um ambiente mal ventilado ou contaminado pode levar à exposição a condições de contração, levando a casos extremos de doenças graves. Portanto, o condicionamento dos espaços começa pela conquista de um ambiente saudável para seus ocupantes, para finalmente proporcionar-lhes o maior conforto possível.

É por isso que queremos explicar o que é psicrometria e o que é um diagrama psicrométrico, bem como para que serve e em que ocasiões podemos precisar de seu uso. Além disso, explicaremos cada uma das variáveis ​​que influenciam seu cálculo.

O que é psicrometria e diagrama psicrométrico?

O condicionamento do espaço para níveis ideais de qualidade do ar e umidade está intimamente ligado ao aquecimento ou resfriamento desse espaço. Este é um dos cálculos mais importantes que devem fazer os profissionais responsáveis ​​pelo apetrechamento e acondicionamento dos espaços, desde habitações privadas a edifícios industriais.

A psicrometria é um ramo da ciência que lida com o estudo das propriedades termodinâmicas do ar úmido e o efeito da umidade atmosférica nos materiais e no conforto humano. É a partir da psicrometria que é possível estudar como as propriedades termodinâmicas do ar úmido influenciam o conforto humano dentro de uma determinada sala.

O diagrama psicrométrico é uma ferramenta representada em um gráfico construído a partir de várias equações. É um conjunto de curvas e retas que estabelecem a relação de alguns parâmetros com outros e, portanto, podemos dizer que o diagrama psicrométrico é uma ferramenta de cálculo, uma vez que podemos obter uma série de variáveis ​​a partir das conhecidas.

Variáveis ​​envolvidas no cálculo do diagrama psicrométrico

O que entendemos por “ar” nada mais é do que uma mistura de gases que envolve a Terra, sendo a atmosfera o que envolve a Terra. Este ar é composto em grande parte de oxigênio, nitrogênio, dióxido de carbono, hidrogênio e vapor de água (também conta em pequenas porcentagens alguns gases raros, como néon ou ozônio).

Bem, também diferenciamos este ar entre ar seco e ar úmido. O ar úmido, que é aquele estudado com o diagrama psicrométrico, é composto por ar seco e vapor d’água. Basicamente, “umidade” é um termo usado para descrever a presença de vapor d’água no ar.

As diferentes propriedades do ar úmido estão relacionadas entre si, com as quais podemos obter as demais variáveis ​​a partir de: temperatura seca ou temperatura de bulbo seco, umidade específica e pressão atmosférica. Este último é determinado pela altura acima do nível do mar

Antes de qualificar cada uma das variáveis, é importante observar que existem três tipos de diagramas psicrométricos. A seguir detalharemos as variáveis ​​utilizadas no diagrama psicrométrico de Carrier, que é o mais utilizado atualmente.

Temperatura de bulbo seco (TS)

É o eixo horizontal ou eixo de abscissa. A temperatura do bulbo seco corresponde à leitura direta que teríamos com um termômetro em uma determinada sala e, portanto, é representada em graus centígrados (° C). Também chamada de temperatura seca.

Temperatura de bulbo úmido (TH)

Também é quantificado em graus centígrados (° C) e corresponde à temperatura do ar úmido. Para fazer a medição, a técnica usual é usar um termômetro com o bulbo coberto com uma bola de algodão ou uma musselina umedecida com água limpa. Quanto mais ou menos seco estiver o ar, mais rápido ou mais lento essa água irá evaporar, determinando o resultado da leitura.

Temperatura do ponto de orvalho (PR)

Especificamente, esses estudos são realizados em aplicações industriais (como as dedicadas ao processamento e armazenamento de alimentos) onde a umidade do ar desempenha um papel fundamental na conservação e qualidade do produto.

Da mesma forma, outros processos industriais requerem controle poderoso sobre o vapor de água no ar e, portanto, é especialmente importante controlar o projeto de equipamentos de refrigeração e ventilação.

Sistemas de coleta de poeira

Atualmente e devido ao avanço produtivo, o setor industrial utiliza uma grande quantidade de compostos químicos e substâncias altamente tóxicas em seus processos operacionais, o que leva ao desenvolvimento de partículas, gases, vapores ou névoas nos espaços de trabalho e no ambiente que ultrapassam níveis segurança permitida e compromete a saúde dos trabalhadores.

Existem alguns dispositivos para a limpeza do ar e / ou partículas divididas em dois grupos: filtros de ar e coletores de poeira, cuja função é remover poluentes do ar ou da corrente de gás para atender às variações nos requisitos de limpeza do ar, grau de remoção necessária, quantidade e características de o poluente a ser eliminado.

Os filtros de ar são projetados para remover pequenas concentrações de poeira da magnitude encontrada no ar atmosférico, normalmente encontrados em sistemas de ventilação, ar condicionado e aquecimento, onde as concentrações de poeira raramente excedem 1,0 grama por mil pés cúbicos de ar e são geralmente bem abaixo de 0,1 grama por mil pés cúbicos de ar, com a seguinte equivalência (Uma libra equivale a 7.000 gramas. Uma concentração típica de poeira atmosférica em uma área urbana é 87 microgramas por metro cúbico ou 0,038 gramas por mil pés cúbicos de ar.)

Os coletores de pó são frequentemente aplicados para concentrações mais pesadas, cargas de processo industrial onde o ar ou gás a ser limpo se origina dos sistemas de exaustão locais ou da pilha de processo de gás efluente. As concentrações de poluentes variam de menos de 0,1 a 100 gramas ou mais para cada pé cúbico de ar ou gás.

Classificação de coletores de poeira

  • Precipitadores eletrostáticos.
  • Colecionadores de tecidos.
  • Coletores úmidos.
  • Coletores centrífugos secos.

Precipitadores eletrostáticos

Na precipitação eletrostática, um campo elétrico de alto potencial é estabelecido entre a descarga e a coleta de eletrodos de carga elétrica oposta, neste caso o eletrodo de descarga é de seção transversal pequena e a área lembra um fio ou uma peça plana, e a coleta O eletrodo possui uma grande superfície, como um prato.

O gás a ser limpo passa por um campo elétrico que se desenvolve entre os eletrodos, em uma tensão crítica, o gás das moléculas se separa em íons positivos e negativos. Esse processo é conhecido como “ionização” e ocorre na superfície da descarga eletrodo.

Íons com a mesma polaridade que o eletrodo de descarga aderem a partículas neutras na corrente de gás à medida que fluem através do precipitado, essas partículas carregadas são então atraídas para uma placa coletora de polaridade oposta e em contato com a superfície de coleta, as partículas de poeira perdem sua carga e podem então ser facilmente removida por lavagem, vibração ou gravidade.

O processo eletrostático consiste no seguinte:

  • Ionizando o gás.
  • Carregamento de partículas de poeira.
  • Transporte das partículas para a superfície coletora.
  • Neutralize ou elimine a carga de poeira.

    Partículas

  • Remova a poeira da superfície de coleta.

Colecionadores de tecidos

Eles eliminam partículas por estresse, impacto, interceptação, difusão e carga eletrostática, o “tecido” pode ser feito de qualquer material fibroso, natural ou artificial, e pode ser fiado em fio e tecido ou feltrado com agulhas, impacto ou ligação.

Os tecidos são identificados pelo número de fios e peso do tecido por unidade de área. Os não tecidos (feltros) são identificados pela espessura e peso por unidade de área, independentemente da construção, o tecido representa uma massa porosa através da qual o gás passa unidirecionalmente, de modo que as partículas de poeira são retidas no lado sujo e o gás limpo passa.

Os coletores de tecido são dimensionados para fornecer uma área suficiente de meio filtrante para permitir a operação sem pressão excessiva, a quantidade de área de filtro necessária depende de muitos fatores, incluindo:

  • Características de liberação de poeira.
  • Porosidade do pó.
  • Concentração de poeira no fluxo de gás de arraste.
  • Tipo de tecido e acabamento superficial, se houver.
  • Tipo de recondicionamento.
  • Intervalo de revisão.
  • Padrão de fluxo de ar dentro do coletor.
  • Temperatura e umidade do fluxo de gás.

Coletor molhado

Os coletores úmidos, ou depuradores, vêm em uma ampla variedade de designs, com uma pressão variando de 1,5 pol. a 100 pol. Geralmente, a eficiência depende da energia usada no contato ar-água e é independente do princípio de operação.

Coletores úmidos têm a capacidade de lidar com altas temperaturas e gases carregados de umidade, neste caso, o acúmulo de poeira em um coletor úmido forma um problema secundário de poeira na remoção do material coletado.

Alguns pós representam explosão ou incêndio quando secos, portanto, a coleta úmida minimiza o risco; no entanto, o uso de água pode apresentar condições corrosivas. Algumas limitações desses sistemas são o congelamento que ocorre quando os coletores estão ao ar livre em climas frios.

Os coletores úmidos têm uma característica que não é encontrada em outros coletores: a capacidade inerente de umidificar que consiste no processo de adição de vapor d’água à corrente de ar por evaporação, embora possa ter vantagens ou desvantagens dependendo da situação.

Quando a corrente de ar inicial está em uma temperatura elevada e insaturada, o processo de evaporação reduz a temperatura e o fluxo volumétrico da corrente de gás que sai do coletor, portanto, o ventilador deve ser selecionado para operar no lado do ar limpo do coletor e, portanto, tende a ser menor e definitivamente requer menos energia, esta é uma das vantagens óbvias da umidificação.

Coletores centrífugos secos

Eles separam as partículas arrastadas de uma corrente de ar pelo uso ou combinação de força centrífuga, inercial e gravitacional.

A eficiência da coleta é influenciada por:

Tamanho, peso e forma da partícula: o desempenho é otimizado conforme o tamanho e o peso aumentam e a forma se torna mais esférica.

Tamanho e design do coletor: A coleta de poeira fina com um dispositivo mecânico requer um design de equipamento para melhor utilizar as forças mecânicas e se adaptar às necessidades específicas da aplicação.

Velocidade: A queda de pressão em um coletor de ciclone aumenta aproximadamente com a velocidade de entrada, no entanto, há uma velocidade ótima que depende do projeto do coletor, das características da poeira, da temperatura e da densidade do gás. Concentração de poeira: Geralmente, o desempenho de um coletor mecânico aumenta à medida que a concentração de poeira se torna maior.

Este tipo de equipamento são classificados da seguinte forma:

 Separador por gravidade: consiste em uma câmara ou caixa na qual, com base na velocidade do ar, as partículas de poeira são forçadas a cair rapidamente e são depositadas pela gravidade.

 Separador inercial: eles dependem da incapacidade do pó de fazer uma curva fechada porque sua inércia é muito maior do que a do fluxo de gás portador. Separadores inerciais bem projetados podem separar partículas na faixa de 10-20 mícrons com eficiência de aproximadamente 90%.

Ciclone: ​​normalmente usados para remover poeira grossa do ar comum, como um pré-filtro para coletores de poeira mais eficientes e / ou como um separador de produto em sistemas de transporte de ar. A principal vantagem é que tem baixo custo, baixa manutenção e quedas de pressão relativamente baixas (na faixa de 0,75 inwg -1,5 inwg). Não é adequado para coletar partículas finas.

O teletrabalho pode afetar a qualidade do ar em casa?

Mais gente, mais tempo sem sair, mais atividade. Se estes meses em que todos estivemos em casa nos mostraram algo, é a importância de termos o nosso lar bem condicionado. Não se trata apenas da dimensão da nossa casa, da distribuição dos espaços ou do conforto dos móveis. Passar mais horas em casa faz com que tenhamos atenção à qualidade do ar interior que vamos respirar.

Tudo o que afeta a qualidade do ar em casa

Os fatores que contribuem para a deterioração da qualidade do ar interno são muitos e variados. É claro que os materiais de construção e nossos móveis podem liberar substâncias tóxicas, entre outras, os chamados VOCs (Compostos Orgânicos Voláteis). Mas, acima de tudo, são as atividades que realizamos dentro de nossas casas que poluem o ar. O simples fato de respirar já implica um aumento dos níveis de CO2 e, por consequência, a necessidade de renovar o ar para cuidar da nossa saúde. Além disso, vírus, bactérias e outros microrganismos aumentam sua presença quanto mais pessoas vivem juntas e quanto mais horas passam em casa.

O impacto do teletrabalho na qualidade do ar interno

Na União Européia, as recomendações começam sempre pela compra de aparelhos que tenham o rótulo Ecolabel ou o certificado American Energy Star, para garantir que sejam itens feitos com materiais sustentáveis ​​e que respeitem os padrões ecológicos. Assim, reduz-se a possibilidade de liberação de VOCs que contaminam o ar interno do espaço onde estão sendo utilizados.

Ventilação mecânica, o melhor aliado do teletrabalho

Todas as pequenas medidas que tomarmos para reduzir o impacto negativo do teletrabalho na qualidade do ar interno em casa são bem-vindas. No entanto, a única forma de garantir um ambiente verdadeiramente saudável é ventilar o espaço de teletrabalho. As janelas podem ser abertas, claro, mas é um gesto que interfere no conforto térmico e, em outro artigo, já explicamos a relação entre isso e a produtividade. A pessoa em teletrabalho quando sente calor ou frio tem uma sensação de desconforto que dificulta a concentração, ou a atenção total às tarefas que estão sendo realizadas.

Por isso, tão importante quanto investir em uma cadeira ergonômica ou em um móvel que permita trabalhar à distância com conforto, também deve ser feito em um sistema que garanta a qualidade do ar em casa. Respirar ar viciado afeta a saúde, causando desde dores de cabeça, a alergias ou problemas respiratórios.

Você pode optar por um dispositivo de filtragem de ar.  Porém, os sistemas realmente eficazes são aqueles que proporcionam a renovação completa do ar, ou seja, um sistema de ventilação mecânica. Com esses dispositivos, o ar poluído é extraído e o consequente fluxo de ar limpo é fornecido. Tudo isso dentro dos mais exigentes níveis de eficiência energética. Existem ainda aqueles que incorporam um recuperador de calor que serve, ao mesmo tempo, para manter uma temperatura constante e adequada, para realizar qualquer atividade com conforto a partir de casa.

Para compatibilizar saúde e teletrabalho, basta tomar algumas medidas de bom senso. Sem dúvida, vale a pena investir na instalação de um sistema de ventilação mecânica para a casa. Para além de aproveitarmos o teletrabalho, este sistema irá melhorar permanentemente o ar interior, beneficiando todos os habitantes da casa.

A importância do conforto térmico nas escolas

No Brasil, além de medir os resultados acadêmicos dos alunos, talvez seja o momento de analisar também as condições ambientais em que estudam. Na verdade, cada vez mais pesquisas confirmam a relação direta entre o conforto térmico nas escolas e o desempenho escolar. Um assunto que achamos interessante aprofundar.

O que é conforto térmico nas escolas?

Nos últimos anos tem-se falado muito sobre um novo modelo de construção, as chamadas “casas passivas”, que harmonizam eficiência energética com bem-estar e conforto. Um conceito que normalmente está relacionado com prédios residenciais, mas que pode ser transferido para todos os tipos de edifícios. Principalmente aqueles em cujo interior nós, pessoas, passamos uma parte importante do nosso tempo. Sem dúvida, um quadro em que escolas e centros educacionais devem ser considerados objetivos prioritários. Lembremo-nos de que nossos filhos ficam muitas horas na sala de aula.

Em geral, esse bem-estar está relacionado à qualidade do ar interno das escolas. E de forma intensa nestes meses de pandemia, em que garantir uma ventilação adequada é um tema recorrente. No entanto, é igualmente importante garantir que esses espaços respondam a níveis mínimos de conforto hidrotérmico. Esta expressão refere-se às condições de umidade, temperatura e renovação do ar que um local fechado deve atender para que a pessoa se sinta confortável e à vontade, no desempenho das atividades que são típicas daquele espaço.

Conforto térmico nas escolas e sucesso escolar

Você pode pensar que esta questão do conforto térmico é uma questão subjetiva, que uma pessoa pode se sentir confortável a 25 graus, enquanto outra sente um calor opressor. Mas o conforto hidrotérmico estabelece requisitos mínimos que se revelam essenciais para manter os níveis de atenção e concentração necessários em uma sala de aula. E esta não é uma descoberta recente, mas está intimamente relacionada à teoria da motivação desenvolvida pelo psicólogo Abraham Maslow em 1943. Para este terapeuta, um indivíduo não pode se envolver em atividades mais avançadas se suas necessidades não forem satisfeitas antes, que incluem não só dieta alimentar, mas também condições básicas de bem-estar e segurança.

Essa teoria foi testada, por exemplo, em um estudo recente realizado em 153 salas de aula em escolas no Reino Unido. Os alunos fizeram duas provas numéricas e duas linguísticas. Em ambas as disciplinas, os resultados melhoraram acentuadamente entre os alunos quando a temperatura das salas de aula foi reduzida de 25 para 20 graus. A essa pesquisa devem ser somados os mais de trezentos artigos dedicados ao estudo da influência do conforto e da qualidade do ar em ambientes de trabalho na produtividade. Obviamente, se essas condições afetam os adultos, o fazem na mesma proporção com as crianças e adolescentes.

Nossas escolas, longe de serem espaços confortáveis ​​e saudáveis

Neste último ano, o regresso às aulas tem sido marcado pela obrigação de garantir uma qualidade do ar adequada nestes espaços. E, infelizmente, a maior parte da ventilação nas escolas só pode ser feita abrindo as janelas. Com essa medida, sem dúvida, o ar se renova. É claro que isso prejudica o fato de os alunos sentirem frio ou calor, dependendo do mês do ano, com o consequente impacto em sua capacidade de aprendizagem.

A situação é muito mais grave do que parece, como mostram os resultados de um estudo publicado em outubro passado pela Passivhaus Building Platform. Esta associação dedicou um ano letivo inteiro à análise das condições ambientais de 36 escolas localizadas em 33 cidades espanholas. É uma pesquisa que se alinha a outras semelhantes realizadas na Inglaterra, com resultados igualmente preocupantes.

As conclusões são incontestáveis:

  • Mais de 32% do tempo de ensino é desenvolvido em condições de baixo conforto térmico nas escolas.
  • A qualidade do ar interno nas escolas não é adequada. Os níveis de concentração de CO2 excedem as taxas saudáveis.
  • Os estudantes espanhóis desfrutam do conforto térmico conveniente nas escolas por um período muito curto de tempo: 20% no melhor dos casos e 11% no pior dos casos.

Não apenas pais e professores, mas a sociedade como um todo deve começar a se preocupar e exigir que as instalações educacionais atendam aos padrões de qualidade do ar interno e conforto térmico. A instalação de sistemas de ventilação mecânica garante que o ar puro seja respirado, mantendo uma temperatura adequada nesses espaços. Um investimento em saúde pública que também tem impacto no desempenho acadêmico dos alunos.